Design Document

HALO: High Autonomous Low-SWaP
Operations

Team Members

Sloan Hatter (shatter2022@mye.fit.edu)
Blake Gisclair (bgisclair2022@my.fit.edu)

Faculty Advisor
Dr. Ryan T. White (rwhite@fit.edu)

September 29, 2025

mailto:shatter2022@my.fit.edu
mailto:bgisclair2022@my.fit.edu
mailto:rwhite@fit.edu

Table of Contents

1. Introduction
1.1. Purpose
1.2. Scope

2. System Design
2.1. Vision Transformer Model

2.2. Processing Pipeline
2.2.1. Training/Quantization-Aware Training (QAT)

2.2.2. On-Device Inference

1. Introduction
1.1. Purpose

The purpose of this Design Document is to describe the architecture, components,
and design decisions for the HALO system through system architecture diagrams
and schematics.

1.2. Scope

This document covers the design and architecture of HALO, including its neural
network model, data processing pipeline, and deployment platform.

2. System Design
2.1. Vision Transformer Model

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Lx °

Norm

Transformer Encoder

M .. g J
[

Extra learnable R . i
[class] embedding Linear Projection of Flattened Patches]

-1 T T T]]
A i 2

Multi-Head
Attention

Embedded
Patches

* weights restricted to the set {0,1}
Image to Patches
e The H x W X (image size is split into non-overlapping P X P patches. Each

: : 2 : . .
patch is flattened into a vector of length P C. This converts the 2-D image into a
token sequence of length N = I-;_VZV that the transformer can read.

Patch Embedding
e FEach flattened patch is mapped by a learned linear layer to a D-dimensional
token. This standardizes patch features into a common space so subsequent layers
can compare and combine tokens efficiently.
CLS Token
e A learned D-dimensional vector is prepended to the sequence. It is optimized to
aggregate global information across the entire sequence and is used later by the
classifier to produce the final prediction.

Position Embeddings
e A position code is added to each token (including [CLS]) to encode its location in
the original image grid. This restores spatial order, which the transformer does not
infer on its own.
Embedded Token Sequence
e After embedding and position addition, the model holdsa (N + 1) X D
sequence [CLS, patch o patchN]. This is the standardized input to all encoder

blocks.
Transformer Encoder Block
e FEach block applies Normalization — Multi-Head Self-Attention — Residual Add
— Normalization — MLP — Residual Add to Whole Sequence. Stacking L
blocks progressively refines token representations.
e Normalization
o LayerNorm/RMSNorm rescales features per token to stabilize
optimization and maintain numerically well-conditioned activations across
depth.
e Multi-Head Self-Attention
o Query, Key, and Value projections are computed for all tokens. Attention

weights are obtained from QK ’ (scaled and softmaxed) and used to mix V.
Multiple heads allow the model to capture diverse relations across tokens.
e Residual Connections

o The block input is added to the outputs of attention and MLP sublayers.
These shortcuts preserve information and improve gradient flow in deep
stacks.

e MLP (Feed-Forward)

o A two-layer per-token network with an activation function increases
representational capacity by mixing channel information independently of
sequence position.

Classifier Head
e The final [CLS] token is passed through a small linear/MLP head to produce class
logits. This converts the aggregated representation into task-specific scores.
Output
e Logits are converted to probabilities (e.g., softmax) and the top class is selected.
This is the model’s final decision.
1-Bit Notes
e Binary weights are used in the heavy linear layers (patch embedding, Q/K/V projections,
and MLP), replacing multiplications with bit operations plus popcount and a learned
scale.
e Normalization, softmax, and (optionally) embeddings/head remain in low integer or half
precision for stability at negligible cost.
e Larger patch size reduces sequence length and attention cost; smaller depth/width and
fewer heads reduce compute and memory.
e Bit-packing of weights/activations minimizes storage and bandwidth, improving
throughput and energy efficiency on constrained hardware.

2.2. Processing Pipeline

2.2.1.

1) DATASET
- Curate, balance
- Train/val/test splits

v

2) PREPROCESS
- Resize / crop
- Normalize (mean/std)

v

3) TOKENIZE (PATCHIFY)
- Stride-P conv
- Flatten

v

4) PATCH EMBEDDING
- FC (1-bit weights)
| - Bit-ops kernels

v

5) ADD TOKENS
- Prepend [CLS]
- Add position enc.

v

&) ENCODER BLOCKS x L
a) Norm
b} Self-Attention
- softmax
c) Residual add
d) Norm
e} MLP (1-bit weights)
f)} Residual add

v

7) CLASSIFIER HEAD
- logits for K classes

v

8) LOSS + QAT
- train with STE

v

9) EXPORT ARTIFACTS
- 1-bit weight blobs
- scales / zero-points
- model config (P,D,L)

Training/Quantization-Aware Training (QAT)

Images + labels
(FP32 storage)

resize/pad -+ HxW, normalize
(FP32 during training)

partition into PxP patches
weights 1-bit, activations int38
bit-packed ops

linear proj to D dims
AND/XNOR + popcount + per-channel
scale activations int8

[CL5] int8 (small), learnable
sin-cos (no params) or int8 learned

sequence: (N+1)xD

per block:

Norm in int8/fpil6

Q/K/V proj 1-bit; dot-prods =
popcount

softmax int8/fplé

accum int8/fpl6

popcount + scale, cheap activation

small MLP/linear
int8/fpl6 preferred

cross-entropy; STE for
binarization; learn per-channel
scales; calibrate ranges

bit-packed
int params

2.2.2.

On-Device Inference

A) INPUT
- HxW=C

v

B) PREPROCESS

v

C) TOKENIZE (PATCHIFY)
- bit-ops + popcount

AJ

D) PATCH EMBEDDING
- popcount + scale

v

E) ADD TOKENS

captured/loaded image
(uint8)

resize/pad, normalize (int8/fpl6)

stride-P binary conv
activations int8; weights 1-bit

1-bit FC = D
per-channel scales

[CLS] + positions (int8 or fixed)

| sequence: (N+1)xD

v

F) ENCODER x L
- MNorm (int8/fpl6)
- Attn: Q/K/V 1-bit
- Residual adds
- MLP 1-bit

v

G) CLASSIFIER HEAD

AJ

H) POSTPROCESS
- class probs / label

popcount attention; softmax
int8/fpl6 accumulators
cheap activation

logits (int8/fpl6)

softmax (int8/fple), top-k
small output payload

	1.​Introduction
	1.1.​Purpose
	1.2.​Scope

	2.​System Design
	2.1.​Vision Transformer Model
	2.2.​Processing Pipeline
	2.2.1.​Training/Quantization-Aware Training (QAT)
	2.2.2.​On-Device Inference

